tively large experimental uncertainties, the carbide lies on the line joining $\mathrm{Os}(1)$ and $\mathrm{Os}(3)$, and in the plane of the other three Os atoms. The cluster may thus be described as a trigonal bipyramid, distorted considerably from equilateral geometry in the equatorial plane (as shown by the angles given in Table 3).

Potential-energy calculations based on the ligand configuration indicate that the hydride bridges the edge $\mathrm{Os}(12)-\mathrm{Os}(15) \quad[\mathrm{Os}(22)-\mathrm{Os}(25)$ in the second molecule]; suitable holes in the close-packed carbonyl arrangement can be seen in Figs. 1 and 2. This assignment is consistent with the relatively large $\mathrm{P}-\mathrm{H}$ coupling (36 Hz) observed in the NMR spectrum; the H and P atoms are both bonded to the same Os. Unusually, the hydride does not bridge the longest Os-Os bond. Except for the orientation of one of the

Fig. 2. Molecule 2, showing 50% probability ellipsoids for the anisotropic atoms.
OCH_{3} groups, the overall molecular geometry is very similar for the two independent molecules. However, the bond lengths involving $\operatorname{Os}(25)$ are in some cases significantly different from those involving $\mathrm{Os}(15)$ [e.g. $\mathrm{Os}(25)-\mathrm{Os}(22) 2.902(3)$, $\mathrm{Os}(15)-\mathrm{Os}(12) 2.927(3)$, Os(25)-Os(23) 2.890(4), Os(15)-Os(13) 2.866 (4) $\AA]$. Os (25) is relatively anisotropic, and the orientation of C(251)-O(251) is significantly different from that of $\mathrm{C}(151)-\mathrm{O}(151)$. These observations are all consistent with some disorder of the bridging hydride in the second molecule, i.e. with the hydride bridging $\mathrm{Os}(25)-$ $\mathrm{Os}(23)$ rather than $\mathrm{Os}(25)-\mathrm{Os}(22)$ in some molecules. This type of disorder might well be fluxional on an NMR time scale in solution, i.e. only an average hydride chemical shift and $\mathrm{P}-\mathrm{H}$ coupling would be seen.

We thank Dr J. Fernandez for providing the compound, the Science Research Council for a contribution towards the cost of the diffractometer, and BP Ltd for financial support to AGO. Calculations were performed with the Cambridge University IBM $370 / 165$ computer and programs written by the authors.

References

Bruce, M. I., Howard, J. A. K., Nowell, I. W., Shaw, G. \& Woodward, P. W. (1972). Chem. Commun. pp. $1041-$ 1042.

Eady, C. R., Johnson, B. F. G. \& Lewis, J. (1975). J. Chem. Soc. Dalton Trans. pp. 2606-2611.
Fernandez, J. M., Johnson, B. F. G. \& Lewis, J. (1977). Private communication.
Wade, K. (1975). Chem. Br. 11, 177-183.

Acta Cryst. (1978). B34, 1994-1997

Carbidotetradecacarbonylhydrido(dimethyl phosphonato)pentaosmium, $\mathrm{HOs}_{5} \mathrm{C}(\mathrm{CO})_{14}\left[\mathrm{OP}\left(\mathrm{OCH}_{3}\right)_{2}\right]$

By Juan M. Fernandez, Brian F. G. Johnson, Jack Lewis, Paul R. Raithby and George M. Sheldrick
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 21 January 1978; accepted 4 February 1978)

Abstract

C}_{17} \mathrm{H}_{7} \mathrm{O}_{17} \mathrm{POS}_{5}\), monoclinic, $P 2_{1} / n, a=$ $9.200(4), \quad b=31.809(13), c=9.486(4) \AA$, $\beta=103.13(3)^{\circ}, U=2703.4 \AA^{3}, Z=4, D_{x}=3.60$ $\mathrm{g} \mathrm{cm}^{-3}, \mu\left(\mathrm{Mo} K(r)=235.4 \mathrm{~cm}^{-1}\right.$. The structure was refined to an R of 0.039 for 4781 unique diffractometer data. The Os atoms define a distorted trigonal

bipyramid, with a carbide lying in the equatorial plane. The phosphonate ligand coordinates to two Os atoms to form an $\mathrm{Os}-\mathrm{P}-\mathrm{O}-$ Os linkage.

Introduction. The pyrolysis of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left[\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right]$ yields a number of pentanuclear clusters containing
uncommon \mathbf{P} donor ligands (Fernandez, Johnson \& Lewis, 1977). The characterization of these compounds by spectroscopic techniques has proved difficult, and the crystal structure determination of this product has been undertaken to establish the molecular geometry. The structure of another derivative has been reported (Orpen \& Sheldrick, 1978).

Crystals were obtained as yellow, elongated rectangular blocks from ethyl acetate/hexane. 6682 intensities were recorded on a Syntex $P 2_{1}$ four-circle diffractometer, with graphite-monochromated Mo $K a$ radiation, a $\theta-2 \theta$ scan procedure, and a crystal $0.28 \times$ $0.11 \times 0.09 \mathrm{~mm}$. Lp and semi-empirical absorption corrections were applied (based on azimuthal scan data from 36 strong reflexions). Transmission factors ranged from 0.418 to 0.736 . Cell dimensions were

Table 1. Atom coordinates ($\times 10^{4}$) and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U
Os(1)	4185 (1)	966 (1)	1749 (1)	
Os(2)	3278 (1)	957 (1)	4451 (1)	
$\mathrm{Os}(3)$	2726 (1)	1773 (1)	1199 (1)	
Os(4)	5005 (1)	1655 (1)	3799 (1)	*
$\mathrm{Os}(5)$	618 (1)	1333 (1)	2589 (1)	*
$\mathrm{P}(1)$	1978 (4)	660 (1)	617 (3)	*
$\mathrm{O}(1)$	1765 (12)	169 (3)	820 (10)	*
$\mathrm{O}(2)$	1711 (13)	711 (4)	-1103 (9)	
$\mathrm{O}(3)$	634 (11)	841 (3)	1084 (10)	
C(1)	2588 (24)	-137(5)	212 (24)	
C(2)	261 (24)	579 (7)	-2049 (17)	*
C(10)	2962 (15)	1360 (4)	2806 (13)	28 (3)
$\mathrm{C}(11)$	4904 (18)	992 (4)	8 (15)	36 (3)
$\mathrm{O}(11)$	5310 (14)	1010 (3)	-1020 (12)	49 (3)
C(12)	5189 (15)	466 (4)	2370 (13)	27 (3)
$\mathrm{O}(12)$	5804 (13)	145 (3)	2753 (12)	47 (3)
$\mathrm{C}(21)$	5040 (18)	683 (5)	5470 (16)	39 (3)
O(21)	6109 (15)	510 (4)	6057 (14)	63 (3)
C(22)	2817 (18)	1204 (5)	6127 (16)	41 (3)
O(22)	2571 (15)	1385 (4)	7075 (13)	61 (3)
$\mathrm{C}(23)$	2200 (19)	444 (5)	4387 (16)	43 (4)
$\mathrm{O}(23)$	1485 (15)	149 (4)	4376 (13)	57 (3)
C(31)	1206 (19)	1735 (4)	-519 (16)	39 (3)
$\mathrm{O}(31)$	248 (16)	1729 (4)	-1558(14)	65 (4)
C(32)	2268 (18)	2337 (5)	1701 (16)	40 (3)
O(32)	2107 (15)	2662 (4)	2114 (13)	64 (3)
C(33)	4093 (19)	1941 (5)	49 (17)	44 (4)
$\mathrm{O}(33)$	4899 (15)	2033 (4)	-643 (13)	59 (3)
C(41)	6208 (20)	2063 (5)	3095 (17)	46 (4)
O(41)	6858 (18)	2331 (4)	2720 (15)	74 (4)
C(42)	6563 (18)	1490 (5)	5338 (16)	40 (3)
$\mathrm{O}(42)$	7486 (16)	1397 (4)	6358 (14)	67 (4)
C(43)	4204 (21)	2050 (5)	4904 (18)	49 (4)
O(43)	3752 (16)	2289 (4)	5602 (13)	62 (3)
C(51)	-1068 (19)	1565 (5)	1251 (17)	42 (3)
O(51)	-2062 (17)	1682 (4)	407 (15)	69 (4)
$\mathrm{C}(52)$	-597 (19)	990 (5)	3500 (16)	42 (3)
$\mathrm{O}(52)$	-1320 (16)	783 (4)	4023 (14)	70 (4)
C(53)	542 (19)	1769 (5)	3894 (17)	44 (4)
O(53)	462 (15)	2028 (4)	4729 (14)	62 (3)

obtained by least squares from the 2θ angles for 15 strong high-angle ($20.0<2 \theta \leq 30.0^{\circ}$) reflexions.

The Os atoms were located by multisolution \sum_{2} sign expansion, and the light atoms from difference syntheses; no attempt was made to locate the H atoms. The structure was refined by blocked-cascade least squares, with the weighting scheme $w=1 /\left[\sigma^{2}(F)+\right.$ $0.00115|F|^{2}$]. The Os, and the P, O and C atoms in the dimethyl phosphonate ligand were assigned anisotropic thermal parameters; an empirical extinction parameter x which refined to 0.00011 (1) was also included; F_{c} is multiplied by $\left(1-0.0001 x F_{c}^{2} / \sin \theta\right)$. Complex neutral-atom scattering factors were employed. The refinement converged to $R_{w}=$ $\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|=0.041$ and $R=0.039$. Final atomic coordinates and isotropic thermal parameters are listed in Table 1, bond lengths and angles in Tables 2 and 3 .*

Discussion. The geometry of the metal framework (Fig. 1) is derived from that of $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ (Reichert \& Sheldrick, 1977) by the breaking of one Os(equatorial)Os (equatorial) and one Os (equatorial)-Os(axial) bond; $\mathrm{Os}(1) \cdots \mathrm{Os}(5) 3.74$ and $\mathrm{Os}(2) \cdots \mathrm{Os}(3) 3.98 \AA$. In terms of a skeletal electron-counting scheme (Eady, Johnson \& Lewis, 1975), $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ is a 72 -electron system. In $\mathrm{HOs}_{5} \mathrm{C}(\mathrm{CO})_{14}\left[\mathrm{OP}\left(\mathrm{OCH}_{3}\right)_{2}\right]$, the carbide, a

[^0]Table 2. Bond lengths (\AA)

$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.870(2)$	$\mathrm{Os}(1)-\mathrm{C}(11)$	$1.915(16)$
$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.889(2)$	$\mathrm{Os}(1)-\mathrm{C}(12)$	$1.868(12)$
$\mathrm{Os}(1)-\mathrm{Os}(4)$	$2.914(2)$	$\mathrm{Os}(2)-\mathrm{C}(21)$	$1.901(15)$
$\mathrm{Os}(2)-\mathrm{Os}(4)$	$2.879(2)$	$\mathrm{Os}(2)-\mathrm{C}(22)$	$1.905(16)$
$\mathrm{Os}(2)-\mathrm{Os}(5)$	$2.928(2)$	$\mathrm{Os}(2)-\mathrm{C}(23)$	$1.904(16)$
$\mathrm{Os}(3)-\mathrm{Os}(4)$	$2.876(2)$	$\mathrm{Os}(3)-\mathrm{C}(31)$	$1.895(14)$
$\mathrm{Os}(3)-\mathrm{Os}(5)$	$2.937(2)$	$\mathrm{Os}(3)-\mathrm{C}(32)$	$1.927(15)$
$\mathrm{Os}(1)-\mathrm{P}(1)$	$2.288(3)$	$\mathrm{Os}(3)-\mathrm{C}(33)$	$1.918(19)$
$\mathrm{Os}(5)-\mathrm{O}(3)$	$2.122(10)$	$\mathrm{Os}(4)-\mathrm{C}(41)$	$1.922(18)$
$\mathrm{Os}(1)-\mathrm{C}(10)$	$2.086(14)$	$\mathrm{Os}(4)-\mathrm{C}(42)$	$1.874(14)$
$\mathrm{Os}(2)-\mathrm{C}(10)$	$1.988(12)$	$\mathrm{Os}(4)-\mathrm{C}(43)$	$1.888(18)$
$\mathrm{Os}(3)-\mathrm{C}(10)$	$1.988(12)$	$\mathrm{Os}(5)-\mathrm{C}(51)$	$1.915(15)$
$\mathrm{Os}(4)-\mathrm{C}(10)$	$2.121(12)$	$\mathrm{Os}(5)-\mathrm{C}(52)$	$1.904(17)$
$\mathrm{Os}(5)-\mathrm{C}(10)$	$2.121(14)$	$\mathrm{Os}(5)-\mathrm{C}(53)$	$1.870(16)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.590(9)$	$\mathrm{C}(31)-\mathrm{O}(31)$	$1.164(19)$
$\mathrm{P}(1)-\mathrm{O}(2)$	$1.603(9)$	$\mathrm{C}(32)-\mathrm{O}(22)$	$1.126(20)$
$\mathrm{P}(1)-\mathrm{O}(3)$	$1.519(11)$	$\mathrm{C}(33)-\mathrm{O}(33)$	$1.135(24)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.434(24)$	$\mathrm{C}(41)-\mathrm{O}(41)$	$1.142(23)$
$\mathrm{O}(2)-\mathrm{C}(2)$	$1.489(22)$	$\mathrm{C}(42)-\mathrm{O}(42)$	$1.171(19)$
$\mathrm{C}(11)-\mathrm{O}(11)$	$1.122(20)$	$\mathrm{C}(43)-\mathrm{O}(43)$	$1.147(23)$
$\mathrm{C}(12)-\mathrm{O}(12)$	$1.182(16)$	$\mathrm{C}(51)-\mathrm{O}(51)$	$1.132(20)$
$\mathrm{C}(1)-\mathrm{O}(21)$	$1.155(20)$	$\mathrm{C}(52)-\mathrm{O}(52)$	$1.127(23)$
$\mathrm{C}(22)-\mathrm{O}(22)$	$1.134(21)$	$\mathrm{C}(53)-\mathrm{O}(53)$	$1.157(20)$

Table 3 (cont.)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(4)$
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Os}(4)$ $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(4)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(5)$ $\mathrm{Os}(4)-\mathrm{Os}(2)-\mathrm{Os}(5)$ $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(4)$ $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(5)$ $\mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{Os}(5)$ $\mathrm{Os}(1)-\mathrm{Os}(4)-\mathrm{Os}(2)$ $\mathrm{Os}(1)-\mathrm{Os}(4)-\mathrm{Os}(3)$ $\mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{Os}(3)$ $\mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{Os}(3)$ $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{P}(1)$ $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{P}(1)$ Os(4)-Os(1)-P(1)
Os(2)-Os(1)-C(10)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(10)$
Os(4)-Os(1)-C(10)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(10)$
Os(4)-Os(2)-C(10)
Os(5)-Os(2)-C(10)
Os(1)-Os(3)-C(10)
$\mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{C}(10)$
Os(5)-Os(3)-C(10)
$\mathrm{Os}(1)-\mathrm{Os}(4)-\mathrm{C}(10)$
Os(2)-Os(4)-C(10)
$\mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{C}(10)$
$\mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{C}(10)$
$\mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{C}(10)$
$\mathrm{O}(3)-\mathrm{Os}(5)-\mathrm{C}(10)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(10)$
$\mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{O}(3)$
$\mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{O}(3)$
$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{O}(1)$
$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{O}(2)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$
$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{O}(3)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)$
$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(3)$
$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{C}(1)$
$\mathrm{P}(1)-\mathrm{O}(2)-\mathrm{C}(2)$
$\mathrm{Os}(5)-\mathrm{O}(3)-\mathrm{P}(1)$
$\mathrm{Os}(1)-\mathrm{C}(10)-\mathrm{Os}(2)$
$\mathrm{Os}(1)-\mathrm{C}(10)-\mathrm{Os}(3)$
$\mathrm{Os}(2)-\mathrm{C}(10)-\mathrm{Os}(3)$
Os(1)-C(10)-Os(4)
Os(2)-C(10)-Os(4)
Os(3)-C(10)-Os(4)
$\mathrm{Os}(1)-\mathrm{C}(10)-\mathrm{Os}(5)$
Os(2)-C(10)-Os(5)
Os(3)-C(10)-Os(5)
Os(4)-C(10)-Os(5)
Os(1)-C(11)-O(11)
$\mathrm{Os}(1)-\mathrm{C}(12)-\mathrm{O}(12)$
Os(2)-C(21)-O(21)
$\mathrm{Os}(2)-\mathrm{C}(22)-\mathrm{O}(22)$
87.3 (1) $\quad \mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(11) \quad 176 \cdot 2(4)$
$59.7(1) \quad \mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(11) \quad 92.5(4)$
59.4 (1) $\quad \mathrm{Os}(4)-\mathrm{Os}(1)-\mathrm{C}(11) \quad 117 \cdot 1$ (4)
$60 \cdot 9(1) \quad \mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12) \quad 86 \cdot 2$ (4)
$80 \cdot 2$ (1) $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(12) \quad 172.2$ (4)
88.9 (1) $\quad \mathrm{Os}(4)-\mathrm{Os}(1)-\mathrm{C}(12) \quad 113.4$ (4)
60.7 (1) $\quad \mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21) \quad 94.1(5)$
$79.8(1) \quad \mathrm{Os}(4)-\mathrm{Os}(2)-\mathrm{C}(21) \quad 90.9(5)$
88.8 (1) $\quad \mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{C}(21) \quad 173.6$ (5)
59.4 (1) $\quad \mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22) \quad 155.0(5)$
59.9 (1) Os(4)-Os(2)-C(22) 95.7 (5)
87.4 (1) $\quad \mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{C}(22) \quad 91.2$ (4)
$85 \cdot 3$ (1) Os(1)-Os(2)-C(23) 103.6 (5)
90.4 (1) $\quad \mathrm{Os}(4)-\mathrm{Os}(2)-\mathrm{C}(23) \quad 164.5$ (5)
88.2 (1) $\quad \mathrm{Os}(5)-\mathrm{Os}(2)-\mathrm{C}(23) \quad 88.5$ (4)
134.5 (1) $\quad \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(31) \quad 108.7$ (4)
43.8 (3) $\quad \mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{C}(31) \quad 168.8$ (4)
43.5 (3) $\quad \mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{C}(31) \quad 85.5(5)$
46.7 (3) $\quad \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32) \quad 154.3$ (4)
46.6(4) Os(4)-Os(3)-C(32) 93.8 (4)
47.4 (4) $\quad \mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{C}(32) \quad 97.4$ (5)
46.4 (4) $\quad \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(33) \quad 90.7(5)$
$46 \cdot 2$ (4) $\quad \mathrm{Os}(4)-\mathrm{Os}(3)-\mathrm{C}(33) \quad 94.6$ (4)
47.5 (4) $\quad \mathrm{Os}(5)-\mathrm{Os}(3)-\mathrm{C}(33) \quad 166.7(5)$
46.2 (4) $\quad \mathrm{Os}(1)-\mathrm{Os}(4)-\mathrm{C}(41) \quad 111.0(5)$
45.7 (4) $\quad \mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{C}(41) \quad 170 \cdot 2(5)$
43.7 (3) $\quad \mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{C}(41) \quad 88.8$ (5)
43.7 (3) $\quad \mathrm{Os}(1)-\mathrm{Os}(4)-\mathrm{C}(42) \quad 110 \cdot 2$ (5)
42.8 (3) $\quad \mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{C}(42) \quad 88.8$ (5)
42.6 (3) $\quad \mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{C}(42) \quad 169.9$ (5)
86.1 (4) $\quad \mathrm{Os}(1)-\mathrm{Os}(4)-\mathrm{C}(43) \quad 142.7$ (5)
87.9 (3) $\quad \mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{C}(43) \quad 95.2$ (6)
88.4 (2) $\quad \mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{C}(43) \quad 95.1(5)$
86.7 (3) $\quad \mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{C}(51) \quad 175.8$ (5)
118.8 (4) $\quad \mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{C}(51) \quad 92.1(5)$
110.4 (5) $\quad \mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{C}(52) \quad 89.3$ (5)
103.3 (5) Os(3)-Os(5)-C(52) 173.1(5)
113.3 (4) $\quad \mathrm{Os}(2)-\mathrm{Os}(5)-\mathrm{C}(53) \quad 93.2$ (5)
101.9 (6) $\quad \mathrm{Os}(3)-\mathrm{Os}(5)-\mathrm{C}(53) \quad 94.1(5)$
108.1 (6) $\quad \mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(11) \quad 93.3$ (4)
121.9 (11) C(10)-Os(1)-C(11) 135.9 (5)
119.6 (11) $\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{C}(12) \quad 96.1$ (4)
127.4 (6) C(10)-Os(1)-C(12) 130.0 (5)
89.6 (5) $\quad \mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12) \quad 93.8$ (6)
90.3 (5) $\quad \mathrm{C}(10)-\mathrm{Os}(2)-\mathrm{C}(21) \quad 130.6$ (7)
177.6 (8) $\quad \mathrm{C}(10)-\mathrm{Os}(2)-\mathrm{C}(22) \quad 111.7$ (6)
87.7 (5) C(10)-Os(2)-C(23) 123.0 (6)
88.9 (4) $\quad \mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(22) \quad 95.2$ (6)
88.8 (5) $\quad \mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23) \quad 90.0(6)$
$125 \cdot 3$ (6) $\quad \mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23) \quad 99.6$ (7)
90.8 (6) $\quad \mathrm{C}(10)-\mathrm{Os}(3)-\mathrm{C}(31) \quad 123.2$ (6)
91.2 (5) $\quad \mathrm{C}(10)-\mathrm{Os}(3)-\mathrm{C}(32) \quad 114.7$ (6)
147.1 (7) C(10)-Os(3)-C(33) $130 \cdot 4$ (6)
179.1 (11) $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32) \quad 96.4$ (6)
178.9 (9) $\quad \mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(33) \quad 88.8$ (7)
178.2 (12) $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(33) \quad 95.2$ (7)
173.7 (14) $\mathrm{C}(10)-\mathrm{Os}(4)-\mathrm{C}(41) \quad 131.9$ (6)
$\mathrm{Os}(2)-\mathrm{C}(23)-\mathrm{O}(23) \quad 175.8$ (16) $\mathrm{C}(10)-\mathrm{Os}(4)-\mathrm{C}(42) \quad 131.7$ (6)
$\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(31) \quad 177.0(13) \quad \mathrm{C}(10)-\mathrm{Os}(4)-\mathrm{C}(43) \quad 97.1$ (6)
$\mathrm{Os}(3)-\mathrm{C}(32)-\mathrm{O}(32) \quad 173.2$ (13) $\mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{C}(42) \quad 93.5$ (7)
$\mathrm{Os}(3)-\mathrm{C}(33)-\mathrm{O}(33) \quad 178.8(10) \quad \mathrm{C}(41)-\mathrm{Os}(4)-\mathrm{C}(43) \quad 94.1$ (8)
$\mathrm{Os}(4)-\mathrm{C}(41)-\mathrm{O}(41) \quad 174.4$ (16) $\mathrm{C}(42)-\mathrm{Os}(4)-\mathrm{C}(43) \quad 94.6$ (7)
$\mathrm{Os}(4)-\mathrm{C}(42)-\mathrm{O}(42) \quad 175.8(16) \quad \mathrm{O}(3)-\mathrm{Os}(5)-\mathrm{C}(51) \quad 88.1(5)$
$\mathrm{Os}(4)-\mathrm{C}(43)-\mathrm{O}(43) \quad 178.2(16) \mathrm{O}(3)-\mathrm{Os}(5)-\mathrm{C}(52) \quad 88.7(5)$
$\mathrm{Os}(5)-\mathrm{C}(51)-\mathrm{O}(51) \quad 175 \cdot 8$ (14) $\mathrm{O}(3)-\mathrm{Os}(5)-\mathrm{C}(53) \quad 178.3$ (6)
$\mathrm{Os}(5)-\mathrm{C}(52)-\mathrm{O}(52) \quad 179.1$ (11) $\mathrm{C}(10)-\mathrm{Os}(5)-\mathrm{C}(51) \quad 134.5$ (6)
$\mathrm{Os}(5)-\mathrm{C}(53)-\mathrm{O}(53) \quad 177.2(14) \quad \mathrm{C}(10)-\mathrm{Os}(5)-\mathrm{C}(52) \quad 131.9$ (6)
$\mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{C}(52) \quad 93.0(7) \quad \mathrm{C}(10)-\mathrm{Os}(5)-\mathrm{C}(53) \quad 95.5(6)$
$\mathrm{C}(52)-\mathrm{Os}(5)-\mathrm{C}(53) \quad 90.7(7) \quad \mathrm{C}(51)-\mathrm{Os}(5)-\mathrm{C}(53) \quad 90.4$ (7)
occurs in $\mathrm{HOs}_{5} \mathrm{C}(\mathrm{CO})_{13}\left[\mathrm{OP}\left(\mathrm{OCH}_{3}\right) \mathrm{OP}\left(\mathrm{OCH}_{3}\right)_{2}\right](\mathrm{Or}-$ pen \& Sheldrick, 1978).
The two longest $\mathrm{Os}-\mathrm{Os}$ bonds are those involving Os(5), which may help to redress any electron imbalance resulting from the coordination of three CO ligands and the phosphonate O to this atom. The long Os(1)--Os(4) distance may reveal the position of an edge-bridging hydride; the carbonyl ligands bend away from this bond (Fig. 2), with an average cis Os-OsC (carbonyl) bond angle at these two Os atoms of 113°, compared with 93° for the remainder. A similar ligand geometry is observed for the hydride-bridged Os-Os bond in $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{11}$ (Churchill \& DeBoer, 1977). The proposed position of the hydride, bonded to the same Os as the P atom, is in agreement with the ${ }^{1} \mathrm{H}$ NMR data which show a large splitting of the hydride signal ($J=35 \cdot 1 \mathrm{~Hz}$) due to the ${ }^{31} \mathrm{P}$ nucleus.
The carbide sits in the $\mathrm{Os}(1) \mathrm{Os}(2) \mathrm{Os}(3)$ triangle (deviation from plane $0.03 \AA$), lying close to the Os(2) $\cdots \mathrm{Os}(3)$ non-bonded edge, though it coordinates to all five Os atoms. It also lies on the pseudo mirror plane passing through $\mathrm{Os}(4)$ and the planar $\mathrm{Os}(1)-$ $\mathrm{P}(1)-\mathrm{O}(3)-\mathrm{Os}(5)$ system (maximum deviation 0.005

Fig. 1. The $\mathrm{Os}_{5} \mathrm{C}$ geometry.
four-electron donor, has the effect of replacing the two CO groups, but, with the $\mathrm{OP}\left(\mathrm{OCH}_{3}\right)_{2}$ ligand acting as a three-electron donor, and a further electron from the hydride, a 76 -electron system results. The inclusion of two additional electron pairs requires the observed rupture of two metal-metal bonds. A similar situation

Fig. 2. $\mathrm{HOs}_{5} \mathrm{C}(\mathrm{CO})_{14}\left[\mathrm{OP}\left(\mathrm{OCH}_{3}\right)_{2}\right]$, showing the atom numbering.
\AA). $\mathrm{Os}(1)-\mathrm{P}(1)$ and $\mathrm{P}(1)-\mathrm{O}(3)$ are shorter than would be expected for pure σ bonds, while $\mathrm{Os}(5)-\mathrm{O}(3)$ is long. Similar trends have been observed in the $\mathrm{Ru}-\mathrm{P}-$ $\mathrm{O}-\mathrm{Ru}$ system of $\mathrm{HRu}_{2}(\mathrm{CO})_{3}\left[\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4}\right)(\mathrm{OPh})_{2}\right]_{2}-$ $\left[\mathrm{OP}(\mathrm{OPh})_{2}\right.$] (Bruce, Howard, Nowell, Shaw \& Woodward, 1972), and the short bonds have been explained in terms of π interactions.

The CO groups are all linear, and the mean $\mathrm{Os}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ lengths of 1.900 and $1.15 \AA$, respectively, are in good agreement with the 1.89 and $1.16 \AA$ for $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ (Reichert \& Sheldrick, 1977).

We thank the Science Research Council for financial support. Calculations were performed with the Cambridge University IBM $370 / 165$ computer and programs written by GMS.

References

Bruce, M. I., Howard, J. A. K., Nowell, I. W., Shaw, G. \& Woodward, P. W. (1972). Chem. Commun. pp. 10411042.

Churchill, M. R. \& DeBoer, B. G. (1977). Inorg. Chem. 16, 878-884.
Eady, C. R., Johnson, B. F. G. \& Lewis, J. (1975). J. Chem. Soc. Dalton Trans. pp. 2606-2611.
Fernandez, J. M., Johnson, B. F. G. \& Lewis, J. (1977). Private communication.
Orpen, A. G. \& Sheldrick, G. M. (1978). Acta Cryst. B34, 1992-1994.
Reichert, B. E. \& Sheldrick, G. M. (1977). Acta Cryst. B33, 173-175.

Acta Cryst. (1978). B34, 1997-1999

Potassium Dicyano[(dithionitrito-S)amido]nickelate(II)

By Johannes Weiss
Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D 6900 Heidelberg 1, Federal Republic of Germany

(Received 5 December 1977; accepted 20 January 1978)

Abstract

K}\left[\mathrm{Ni}(\mathrm{CN})_{2} \mathrm{HN}_{2} \mathrm{~S}_{2}\right]\), monoclinic, $P 2_{1} / c, a=$ 4.203 (2), $b=18.286$ (2), $c=10.440$ (2) $\AA, \beta=$ $95.64(3)^{\circ}, V=798.5 \AA^{3}, Z=4, D_{x}=2.04 \mathrm{~g} \mathrm{~cm}^{-3}$. Refined to $R=0.065$ for 1452 observed reflexions. The Ni is coordinated in a square-planar manner by the C atoms of the CN groups and one S and one N atom of the $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{H}$ chelate ligand.

Introduction. There are several well-characterized complexes containing two chelating $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{H}$ ligands (Weiss, 1966; Weiss \& Thewalt, 1968; Mayer \& Weiss, 1978), but the title compound is the only stable anionic complex with one chelating $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{H}$ group. Only one complex containing one $\mathrm{S}_{2} \mathrm{~N}_{2}$ (or $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{H}$?) ligand

has been described: $\mathrm{Cu}\left(\mathrm{S}_{2} \mathrm{~N}_{2}\right) X_{2}, X=\mathrm{Cl}, \mathrm{Br}$ (Fluck \& Goehring, 1956), but crystals could not be obtained.

The title compound was prepared as described by Weiss (1957). Suitable crystals were obtained by slow evaporation of an ethanolic solution. Lattice constants were calculated from the θ values of 37 reflexions, determined on an automatic single-crystal diffractometer (Siemens), by least squares (Berdesinski \& Nuber, 1966). Intensity measurements on the Siemens diffractometer with the five-value method and $\theta-2 \theta$ scans with Mo $K \alpha$ radiation up to $2 \theta=64^{\circ}$ yielded 1452 observed reflexions. Reflexions with $I<2 \cdot 58 \sigma(I)$ were classified as unobserved. The intensities were corrected for Lorentz and polarization factors only.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33387 (31 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

